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Abstract — High-frequency solar variability is an important to 
grid integration studies, but ground measurements are scarce. The 
high resolution irradiance algorithm (HRIA) has the ability to 
produce 4-sceond resolution global horizontal irradiance (GHI) 

samples, at locations across North America. However, the HRIA 
has not been extensively validated. In this work, we evaluate the 
HRIA against a database of 10 high-frequency ground-based 

measurements of irradiance. The evaluation focuses on 
variability-based metrics. This results in a greater understanding 
of the errors in the HRIA as well as suggestions for improvement 

to the HRIA. 

Index Terms — solar energy, solar power generation, power 
grids. 

 

I.  INTRODUCTION 

High-frequency solar variability is an important input to 

accurate distribution grid integration studies. Using low-

frequency solar variability results in underestimation of the 

impact of solar photovoltaics (PV) to distribution grid 

operations. Underestimations of voltage regulator tap change 

operations of up 20-70% were found when using 15-minute 

solar variability instead of 30-second solar variability [1].  

However, measurements of high-frequency solar variability 

are scarce. Sandia has collected a database of 10 high-frequency 

(30-seconds or better) irradiance measurements, mostly in the 

western United States. Separately, NREL has developed 

satellite-derived irradiance variability samples with resolution 

up to 4-seconds [2] and availability across the United States.  

In this paper, we present initial results from ongoing work 

comparing these two datasets to determine the relative accuracy 

of the satellite-derived high-frequency irradiance, and to 

suggest improvements to the satellite downscaling (30-minute 

to 4-second) methods.  

A.  Importance of High-Frequency Solar Variability  

Central to the work presented in this paper is the assumption 

that low-frequency irradiance data (e.g., satellite-derived 30-

minute data) is at insufficient resolution for distribution grid 

integration studies. The importance of high-resolution 

measurements for distribution grid simulations is discussed in 

detail in a parallel work [3]. In that work, errors in simulated 

number of voltage regulator tap change operations (a measure 

of the impact of PV to distribution grid operations) of up to 27% 

were found simply by using low-resolution data. This shows the 

importance of high-frequency irradiance samples and is 

motivation for the work presented in this paper.  

B.  Previous Works to Create High-Frequency Variability 

There have been several previous works that have attempted 

to create high-frequency solar variability samples from low-

frequency inputs. Methods have included using a reference 

library of high-frequency samples [4] and downscaling using 

wavelet-based methods [5]. However, there is no widely used 

method that has been extensively validated: individual studies 

have typically done local validation at only one specific 

location. 

II.  GROUND MEASURED SOLAR VARIABILITY 

Sandia’s database consists of 10 locations with high-

frequency, ground-based measurements of solar irradiance. The 

locations are shown in Figure 1. Most locations (8 of 10) have 

irradiance measurements at 3-sceond resolution or better, 

allowing for comparison against even the highest resolution of 

satellite-derived data (4-seconds). Additionally, all locations 

except Mayaguez have a full year of data, allowing for 

validation of season trends in solar variability.  

III.  SATELLITE DERIVED SOLAR VARIABILITY 

The NREL-developed high-resolution irradiance algorithm 

(HRIA) is capable of producing irradiance samples at up to 4-

second resolution [2]. 4-second samples are produced based on 

 
Figure 1: Locations with high-frequency irradiance ground-based 

measurements. .   



 

low-frequency, satellite derived irradiance available through 

the National Solar Radiation Database (NSRDB) [6]. As can be 

seen in Figure 2, NSRDB measurements, and, hence HRIA 4-

second samples, are available for most of North America. 

NSRDB irradiance is resolved on a 4 by 4km grid.  

The HRIA predicts the temporal variability for a satellite-

derived irradiance pixel using two steps.  

A.  SIND Method (30-minute to 1-minute)  

First, the method used for the Solar Integration National 

Database (termed the “SIND” method) [7] is used to downscale 

satellite-derived irradiance to 1-minute resolution. This is done 

using a spatial “patch” of satellite data points: both the pixel 

containing the location of interest plus several surrounding 

pixels are used to determine the “Class” of solar variability. 

Classes roughly range from low variability to high variability, 

but can also have features related to changing sky conditions 

(e.g., clear to cloudy). Once a class is selected, it is used to 

model the 1-minute solar variability. Figure 3 gives an 

overview of the process used to create 1-minute resolution 

samples.  

B.  Further Downscaling (1-minute to 4-second)  

Second, the 1-minute samples are further downscaled to 4-

seconds using an extension of the Fourier transform [8], as 

shown in Figure 4. For each class of sky conditions (as defined 

in the SIND method), a library was assembled of 1-second 

ground measurements from Oahu, Hawaii [9]. The average 

Fourier power content was found for each class, and then used 

to fill in the Fourier spectrum in the 1-minute to 4-second range. 

4-second HRIA samples were then created using an inverse 

Fourier transform.  

IV.  COMPARISON METRICS 

Due to the method used to create them, the satellite-derived 

high-frequency irradiance samples are not expected to exactly 

match the ground measured irradiances. Specifically, the timing 

of clouds may not match between satellite-downscaled and 

ground-measured irradiance variability. Instead, it is important 

that the overall irradiance variability statistics are captured by 

the HRIA model. Thus, a direct comparisons using traditional 

evaluation metrics (e.g., RMSE) which compare measurements 

at the exact same timestamp are not appropriate.  

Since the variability samples are most likely to be used to 

understand the relative impact of solar variability to electric 

grid operations, comparison metrics which evaluate the 

variability over a longer period of time such as a day, month, or 

year, are more appropriate.  

One such metric that will be used for comparison is the daily 

variability score [1]. The variability score is a way to quantify 

 
Figure 2: NSRDB coverage [6].   

 
Figure 3: SIND method flowchart, showing how 30-minute satellite data is downscaled to 1-minute resolution [7]. The method uses the 

cloud index (ci) to classify the irradiance in each satellite pixel.    



 

solar variability: variability scores are low (0 to 10) for clear 

conditions which have low variability and large (>100) for 

highly variable conditions. Two data samples that have the 

same variability score have similar solar variability. The 

variability score is the maximum value of the quantity ramp rate 

magnitude (𝑅𝑅0, expressed in % of 1000 Wm-2) times ramp rate 

probability, multiplied by 100 to give an easier to interpret 

number:  

𝑉𝑆𝑅𝑅𝑑𝑖𝑠𝑡 = 100 × max[𝑅𝑅0 × 𝑃(|𝑅𝑅| > 𝑅𝑅0)] (1) 

Here, all comparisons are done at 30-second resolution. Since 

some of the samples in Sandia’s database were collected at 3-

second resolution and so do not have identical timestamps as 

the HRIA data, 30-second averages are a fairer comparison. 

Temporal sensitivity analysis [3] shows at most around 3% 

errors in distribution grid simulations when using 30-second 

irradiance data instead of higher-frequency, so 30-second 

comparisons are sufficient for this analysis. 

V.  INITIAL RESULTS 

In the initial comparison, days were separated into clear and 

cloudy with separate analysis of each. Based on previous 

experience with the VS [1], values VS<10 are typically clear 

days. Thus, day when VS<10 were classified as clear and days 

when VS>10 were classified as cloudy.  

A.  Clear Days 

In general, on clear days the HRIA variability score (VS) is 

similar to the ground VS. As seen in Figure 5, on clear days the 

HRIA produces VS values that are close to the ground VS 

values. In other words, the HRIA does not produce extremely 

variable days when the ground measurements indicated clear 

days. 

However, a trend is seen in Figure 5 whereby the HRIA VS 

almost always exceeds the ground VS (i.e., there are more 

points above the 1:1 line than below).   

Figure 6 shows ground measurements and HRIA simulations 

on a clear day. Even though the HRIA follows the general clear-

sky shape, it has some variability that is not reflected in the 

ground measurements. This is the reason why HRIA VS values 

are slightly higher on clear days than ground VS values: the 

HRIA is adding a small amount of variability, even on fully 

clear days. This is likely caused by the use of the average 

Fourier transform for each class, as described in Section III. B.  

 
Figure 4: [Top] Clearness index samples: blue measured, orange modeled with HRIA. [Bottom] Fourier transforms: green 1-minute 

SIND data, blue 1-second measured, orange modeled with HRIA based on average of library samples [8]. 

 
Figure 5: Scatter plot of HRIA 30-second variability score (y-axis) 

versus ground 30-second variability score (x-axis) on clear days 

during the year 2013 in Albuquerque, NM.. 



 

A second observation from Figure 6 is that the HRIA 

simulated irradiance exceeds the clear-sky values at certain 

times (e.g., around 13:00). Irradiance should only exceed clear-

sky values when nearby clouds provide reflections, termed 

cloud enhancement. On fully clear days such as the one shown 

in Figure 6, there will be no clouds nearby and so clear-sky 

values should not be exceeded by as much as they are in the 

HRIA simulation.  

Because of both the slight overestimation of variability 

during clear conditions and the exceedance of clear-sky values, 

a possible modification to the HRIA would be to simply assume 

a clear-sky model when the HRIA predicts a fully clear day. 

However, care should be exercised to make sure this method 

does not then underestimate the variability. Mostly clear days 

with short variable periods might be predicted to be fully clear, 

and hence the variability underestimated. A mixed statistical 

approach whereby e.g., 90% of clear days are fully clear and 

assigned clear-sky values while 10% of clear days are created 

using the current HRIA method with small amounts of 

variability added could also be investigated. 

B.  Cloudy Days 

On some cloudy days, the HRIA was found to underestimate 

the high-frequency irradiance variability. A highly variable day 

is shown in the top plot of Figure 7. On this day, while the 

HRIA captured the basic trends in the ground data (e.g., the 

reduced irradiance around 08:00), but it did not match the many 

high-frequency up and down ramps seen in the ground data. 

Thus, the HRIA VS (10) did not match the large ground VS 

(136).  

A partial explanation for this variability underestimation may 

be the spatial averaging implicit in the HRIA samples. The 

training library used for the 4-second algorithms is based on the 

average of 18 point sensors in Oahu. Thus, there was inherent 

spatial variability smoothing. The SIND method may also 

suffer from this inherent smoothing,  

To show the impact of spatial smoothing, the bottom plot in 

Figure 7 compares the HRIA sample to a smoothed version of 

the ground sample that was smoothed using the wavelet 

variability model [10] to represent the spatial average over the 

area covered by the 18 point sensors in Oahu. The VS of this 

smoothed sample (31) is closer to that of the HRIA sample, but 

the HRIA sample still underestimates the variability when 

compared to this smoothed sample. Thus, spatial smoothing is 

likely only a partial explanation of the underestimation. 

Since the HRIA is based on two methods of downscaling the 

satellite irradiance – the SIND method from 30-minutes to 1-

minute and the further Fourier downscaling to 4-seconds – the 

variability underestimation could be caused by one or both 

methods. For example, if the 1-minute data does not have 

sufficient variability, the 4-second data will also not have 

sufficient variability, regardless of the ability of the 4-second 

algorithm to accurately downscale from 1-minute to 4-seconds. 

Conversely, if the 1-minute data does have sufficient 

variability, errors may be in the 4-second algorithm.  

 
Figure 6: Plot of ground measurements (blue) and HRIA 

simulated (red) timeseries on a clear day: January 16th, 2013 in 

Albuquerque, NM. 30-second variability scores are also included 

in the top left. 

 

 
Figure 7: [Top] Plot of ground measurements (blue) and HRIA 

simulated (red) timeseries on a cloudy day: April 3rd, 2013 in 

Albuquerque, NM. 30-second variability scores are also included 

in the top left. [Bottom] Same HRIA sample (red), compared to 

ground measurements smoothed over the area covered by the 18 

pyranometers in the NREL Oahu sensor network (yellow).  



 

To help understand the performance at each timescale on this 

highly variable day, we used a wavelet decomposition. The 

wavelet decomposition allows for resolution of variability at a 

variety of timescales [11]. For example, small clouds may cause 

variability at short timescales (e.g., 30-seconds), while longer-

term weather trends will lead to long-term variability (e.g., 1-

hour): these are resolved as fluctuations short or long wavelet 

timescales. Figure 8 shows the wavelet decomposition of the 

clear-sky index for both the ground, HRIA, and smoothed 

ground samples on April 3rd, 2013 (the day shown in Figure 7). 

The smoothing applied to create the smoothed ground sample 

can be seen to reduce the ground variability at shorter 

timescales (i.e., the 32s wavelet timescale). 

The ~1h timescale HRIA variability matches well (at least in 

magnitude) with both the ground and the smoothed ground 

variability. Matches vary at other timescales, but in general the 

HRIA appears to underestimate the variability on this day at all 

timescales less than 30-minutes, even when compared to the 

smoothed ground sample. Specifically, the variability 

underestimation in the ~1m to ~17m range suggests that the 

SIND method is largely responsible for the underestimation of 

variability on this day.  

Possible improvements to better match high-frequency 

variability on a cloudy day include adding more data to the 

library of lookup samples for both the SIND and the 4-second 

algorithms, and making sure that the library measurements 

match the spatial diversity of the ground measurements they are 

meant to represent.  

CONCLUSIONS AND EXPECTED FUTURE IMPROVEMENTS 

Out of the initial analysis of the HRIA dataset, we have two 

directed suggestions to improve the method: 

1. Use a clear sky model to represent clear days to counter the 

slight overestimation of variability on clear days. The 

clear-sky model may be coupled with a probabilistic 

method of determining occasional partly cloudy periods in 

otherwise clear days. 

2. Ensure that appropriate spatial scaling is used. A possible 

reason for HRIA underestimation of variability when 

compared to ground point sensor measurements may be 

that the HRIA relies of data libraries that already include 

spatial smoothing, such as libraries based on the average of 

many sensors.  

Further evaluation comparing HRIA datasets to ground-

measured data will look at which model, the SIND or the 4-

second algorithm, is most responsible for errors in the HRIA 

dataset (i.e., using wavelet decomposition). For example, 

variability underestimation may be caused by the SIND method 

identifying too many periods as mostly clear instead of highly 

variable. 

Through this evaluation and suggested improvements, we 

hope to leverage the ubiquitous availability of HRIA derived 

high-frequency irradiance samples to drastically increase the 

number of high-frequency solar inputs available to grid 

integration studies. With careful validation and modification of 

the methodology to ensure accurate simulated variability, 

HRIA datasets would be very valuable to integration studies in 

areas with no ground-based measurements.  
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